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vanishes. Fig. 2 shows a comparison of the first term 
of (55) with Wilson's formula. They agree well with 
each other, especially for b > Ihl. Consequently, Wil- 
son's formula is almost the same as the first term of 
the asymptotic expression of lh(b) in (55), which is 
not as correct as lh(b) of (13), and hence Wilson's 
formula gives a poor approximation as the crystal 
size decreases. 

For a spherical crystallite, since Vh(r)= 
V,{1-3r/2D+½(r/D)3},(19),and Vho(r)= Vhoo(r)= 
0, (50) agrees with the exact form (20). As shown for 
a cubic crystallite in Fig. 1, the asymptotic expression 
(50) gives an excellent agreement with the exact 

intensity. It can be concluded that the intensity profile 
can be exactly calculated by the asymptotic expansion 
including three single integrals, which can be calcu- 
lated as easily as the Wilson's formula. 
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Abstract 
Integrated direct methods-  isomorphous probability 
distributions [Hauptman (1982). Acta Cryst. A38, 
289-294] are interpreted in terms of the familiar 
parameters of the isomorphous replacement method, 
the diffraction ratio and the differences in the diffrac- 
tion intensities of a native protein and its heavy-atom 
derivative. The analysis shows that the reliability of 
the phase estimates is a function of the degree of 
heavy-atom substitution in the derivative. It clearly 
pinpoints the most favorable conditions for retrieving 
phase information from the intensity data of an 
isomorphous pair of structures. Finally, it provides a 
means to determine a priori the overall reliability of 
the phase estimates and to design the calculations 
accordingly. 

1. Introduction 
Crystallographic studies of molecular structures have 
been traditionally divided into two groups, those of 
macromolecules and those of small molecules. 
Although the central problem of any crystal structure 
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determination, the so-called phase problem, is shared 
by both groups, the techniques developed in the pur- 
suit of a solution to this problem have followed sig- 
nificantly different courses. Bearing in mind the 
intrinsic differences between the two groups, it has 
nevertheless been felt, in the last few years, that the 
expertise acquired in both fields, when properly 
integrated, could strengthen the present methods of 
structure determination, whether applied to small or 
large molecules. The theoretical basis of integrated 
direct methods- isomorphous replacement tech- 
niques has been introduced recently (Hauptman, 
1982). The distributions, although presented in a form 
suitable for computation, are rather complex and 
impermeable to straightforward interpretation in 
terms of the diffraction experiment performed. In the 
present paper we wish to show how a form of the 
distributions, in terms of the experimental param- 
eters, can be obtained easily through simple mathe- 
matical manipulations. The gains from such an exer- 
cise are twofold. Not only can we acquire a better 
understanding of the behavior and scope of the distri- 
butions but we can also gain valuable information on 
how to improve the experiment. 
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2. Integrated direct methods-isomorphous replace- 
ment approach 

2.1. The conditional probability distributions for a pair 
of isomorphous structures in P1 

The data base at hand consists of two diffraction 
data sets. For each reciprocal-lattice vector H, there 
exist two normalized structure factors EH and GH. 
For a triplet of reciprocal-lattice vectors H, K, L 
satisfying H + K + L = 0 ,  there exist eight structure 
invariants 

0) 2 = #9 H -F ~ K  ~- I/JL 

£03 = ~ H  4 OK ~- ~ L  

0")4 = C H  + ~ K  "1- ~ L  

O35 = ~ H  + CK + ffJL 

O36 = OH + (~K + ffJL 

0')7 = OH -F CK -F e L  

('08 ---- OH -J¢- OK -t- 0 L ,  

where the ¢'s and O's 
the isomorphous pair 

(1) 

are the phases associated with 
of structures. 

The task at hand is to extract from the six magni- 
tudes Iu.I, IuKI, lull, IG.I, IGKI, IGLI (the first neigh- 
borhood) estimates of the eight invariants (1). The 
first step is to derive the joint probability distribution 
of the six normalized structure factors EH, EK, EL, 
GH, GK, GL. From that distribution, the conditional 
probability distribution of each of the eight invariants, 
given the six magnitudes IUHI, IUKI, lULl, IG.I, IGKI, 
I GLI, is obtained. A detailed account of this work has 
been reported (Hauptman, 1982). 

Let 

IEH = R!, EK = R2, IEL = R3" 

l a . l=  s,. G --S=,IaLI=S. 
(2) 

The final formula is 

P,( J"2iIR!, R2, R3, S,, S2, $3) -~  l/ K, exp (A, cos ~,),  
i = 1 , 2 , . . . , 8 ,  (3) 

where 
K , =  27rlo(A,) (4) 

and Io is the modified Bessel function. 
The distribution (3) is analogous to that of the 

traditional three-phase invariant (Cochran, 1955; 
Hauptman, 1976). The A, term, however, is sig- 
nificantly different. 

A, = 2{/3, rl RI R2R3 

d- fl2[T21 R, R2S 3 + "r22RIS2R 3 + T23S l R2R3] 

+ f13['r31 RIS2S3 + 7"32S 1 R2S3 + T33S 1 $2R3] 

+ fl4r4Si $2S3}, (5) 

where r = C, C2C3 is obtained by comparing the ith 
s t r u c t u r e  f a c t o r  a s s o c i a t e d  w i t h  t h e  c o e f f i c i e n t  o f  r 
with the ith structure factor associated with the 
invariant. If they are of the same type, i.e. both R or 
both $, then G = 1.0, i=  1,2,3. If one is o f  type R 
and the other of type S, then 

C, = l , ( 2 y R , S , ) /  lo(2yR,S , ) ,  i = 1,2,  3, 

I/2 I/2 _ 1 [  2 "~ v = 

I! and Io are the modified Bessel functions, 

3/2 
20 

/31 ----- (Of200¢02_ a2 )3 [0'300'32- 3 a 2 , a 2 2 o ' , ,  

3 
+ 30/120~O20,21 -- a o 3 a  ! 1], 

f12 

I/2 
Ot200~02 

(0t200~02 -- 01.~21) 3 [ (  0¢21 O¢20-- 0~300~1 l)O~g 2 

-- 2(or 120t20 -- tX210t~ll ) C1~020~ i i 

-at-( 0~030~20 -- 0~120~ i i)og 21] , 

f13 

1/2 
O~ 20 O1~02 

( O~200~02 --  O.t 121 ) 3 [ (  O¢ 120¢02 -- O¢03(2¢ i i ) O¢I0 

(6) 

(7) 

(8) 

(9) 

-- 2 (  O~210~02- O~120~ 11)O~200~ I 1 

2 
+ (~3oao~- ~ ,  ~ , , )a , , ] ,  (10) 

3/2 
frO2 

= -- 30~120~2OO~1 i f14 ( O~200~02 __ O~ 12113 [ O1~03 O~ 30 2 

3 
+ 30~21 °~2oCt2t-  Og3o°t 1 I], (11)  

N 

a,,,,,= f~ gj , 
j =  I 

where fj and gj denote atomic structure factors for a 
corresponding pair of isomorphous structures. 

The formula (3) obtained by Hauptman (1982) is 
completely general and is valid for any isomorphous 
pair of structures in P I. It includes as special cases 
native protein and heavy-atom isomorphous deriva- 
tives as well as X-ray and neutron diffraction data. 
For the special case of a native protein and a heavy- 
atom isomorphous derivative, we will show how 
the parameters of the A term (5) are related to the 
diffraction ratio and the intensity differences, the 
familiar parameters of the isomorphous replacement 
method. 

Let 

S! = R! +/11, 

S2 = R2 + /12 ,  (12) 

S 3 = R 3 + / 1 3 ;  
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then (5) can be rewritten as 

A, = 2{R,R2R3[fl,~', + f12('r2, +'/ '22 +'/'23) 

+ #3(~3, + ~32 + ~33) + #4~4] 

+ R,R2a3[#2~2, + ~3(~'3, + ~32)+ #4~4] 

+ R, A2R3[f12"/'22 

+ A 1R2R3[~2'r23 

+ R, A2 A3[f13'r3, 

+ A, R2A3[/~3"r32 

+ A,A2R3[/~3T33 

-]- A 1A2A3#4T4}. 

+ 03(=3, + ~~3) + #4~'4] 

-~- #3( "/'32 -[- T33) -I- #47-4] 

+04r4]  

+04~4] 

+04~4] 
(13) 

In particular, when the ~"s approach l, i.e. when the 
2yR~Si's are large, we have 

A,-~ 2{ R, R2Ra[fll + 3/32 + 3/33 + 134] 

+[R,R2A3 + R~A2R 3 + A,R2R3][fl2 + 2fl3 + f14] 

+[R,A2A 3 +A,R2A3 +A,A2R3][fl3 +f14] 

+A,A2Aafl4}" (14) 

It we assume that the atomic content of the derivative 
equals the atomic content of the native protein (p) 
plus the heavy-atom content (H) then 

,/2 ,/2/(0:02- 0:2o). (15) ')/ = 0:20 0:02 / 

--(0:03.-_- 0:30_____.) ,.~3/2 -L 0:30 

~I = ( 0 : 0 2 -  0:20) 3 ~20 -- tX20--372 

--(0:03 "~ 3/2 -- 0:3O)0:2O 

- -  (0:02__0:20)3 , ( 1 6 )  

(0:03- 0:30)0:200:1~ 2 
# 2 - -  (0:02__0:20)3 , ( 1 7 )  

- 0:30)0:20 0:02 - ( 0 : 0 3  ,/2 

f13 = (0:°2- a2°) 3 , (18) 

,~, ] ,~3/2 
0¢03 -- t.~301 ot 02 

f l ,=  (0:02_0:20)3 (19) 

and 

0:03 -- 0:30 .~ I/2 __ ,~ 1/2~3 
Ai=2(0:o2_0:2o)3{RIR2R3('~o2 t ~ 2 o ]  

+ [R, R2A3 + R,A2R3 + A,R2R310:~/2( '''/2~,02 - ~.20" ,/2,2, 
]/2 . 1 / 2 ~  

+ [ R I A 2 A  3 + A I R 2 A  3 + A I A 2 R 3 ] a o 2 ( 0 : 0 2  - t.t20 ] 

-~-A 3/2 i A2A30:02 }. (20) 

For abbreviation, define 

?t 
E zT=Ez., 

jEp 

E z~, = E z ; , .  
k~H 

(21) 

The coefficient (flO3--ff30)/(fl~O2--ff20) 3 can be 
expressed as ~ Z 3 / ( ~  Z~)  3. The distribution does 
not depend, as in the case of the traditional three- 
phase invariant, on the total number of atoms per 
unit cell but rather on the scattering difference 
between the native protein and the derivative- that 
is, on the scattering of the heavy atoms in the deriva- 
tive. For the special case in which the heavy atoms 
in the derivative are of equal weight and equal 
occupancy, the distribution depends on the number 
of heavy atoms in the derivative. Since this number 
is usually small, it becomes clear that the distribution 
is capable of yielding extremely reliable estimates. 

Finally, using the binomial series to evaluate the 
a,/2 and ~'/2 2o ~,o2 terms, the Ai term is reduced to 

A, = ~,Z3/4(~.  Zp)23/2 {R~ R2R 3 

where 

+ 2T( RIR2A3 + RIA2R 3 + AlR2R3) 

+4y2(RIA2A3 + A IR2A3 + A IA2R3) 

+ 8')/3A i A2A3},  (22) 

2y~-( l  +2Y. Z21y. Z2) .  (23) 

The coefficient 2y (23) is related to the diffraction 
ratio. This ratio, which is a measure of the average 
change in intensity due to the addition of heavy atoms, 
is estimated at low resolution as 

Z . I E - ~ .  , (2Y~ 2 Z2~,/2 

(Crick & Magdott, 1956). Hence, 

23,---[1 +4/(diffraction ratio)2]. (24) 

The term 2y is usually large compared to unity while 
the term )-'. Z3,/4(Y. Z~) 3/2 is usually very small as 
can be seen from Table 1, illustrating the changes in 
these parameters as platinum atoms are added to 
proteins of different complexities. 

2.2. The optimal case 

The eight magnitude product terms of the distribu- 
tion, RIR2R3, RIR2A3, RIA2R3, AIR2R3, RIA2A3, 
A I R 2 A 3 ,  A I A 2 R 3 ,  AIA2A3, do not contribute equally 
to the Ai term as can be seen from Table 2. 

Comparison of these coefficients shows that the 
predominant terms of the distribution are the AAA 
term and, to a lesser extent, the RAA terms. 

The distribution is capable of yielding extremely 
reliable estimates, particularly in those cases where 
both the A's and the 2y coefficient are large. The 
distribution clearly pinpoints the most favorable 
experimental conditions for retrieving phase informa- 
tion from intensity data of isomorphous pairs of struc- 
tures. In terms of the experiment, these conditions 
are satisfied when the diffraction ratio, or the degree 
of heavy-atom substitution, is relatively small and yet 
differences in the diffraction intensities between the 
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Table 1. Variation of  23, and ~ Z 3  /4 (~  Z2p) 3/2 with 
the diffraction ratio 

N a t i v e  p r o t e i n ,  M R = 15 000  

Number of Diffraction 
Pt atoms ratio 23, y. Z3/4(y. ~2)3/2 - - p /  

l 0"492 17'519 0"010 
2 0"696 9"259 0"022 
3 0"852 6.506 0-032 
4 0.984 5" ! 30 0"042 

N a t i v e  p r o t e i n ,  M R = 25 000  

Number of Diffraction 
Pt atoms ratio 2y Y. Z3 /4(~. Z2) 3/2 

I 0"381 28" 531 0-004 
2 0"539 14"766 0"010 
3 0"660 10.177 0"014 
4 0"762 7"883 0"020 
5 0"852 6"506 0-024 
6 0"934 5"589 0"030 

N a t i v e  p r o t e i n ,  M R = 45 000  

N u m b e r  o f  D i f f r a c t i o n  
Pt  a t o m s  r a t i o  23, ~. Z3/4(Y~ Z 2)3/2 - - p /  

I 0-284 50"556 0.002 
2 0.402 25"778 0-004 
3 0.492 17"519 0.006 
4 0.568 13"389 0-008 
5 0"635 10"911 0-010 
6 0"696 9"259 0"012 
7 0.752 8"079 0.014 
8 0.804 7"i95 0"016 

Table 2. Variation of the coefficients of the magnitude 
product terms with the diffraction ratio 

M R = 15 000 
N u m b e r  

of  Pt Diffraction RRR RRA RAza AAA 
atoms ratio coefficient coefficient coefficient coefficient 

1 0.492 0.010 0.184 3.232 56-628 
2 0.696 0.022 0-196 1-806 16.722 
3 0.852 0.032 0.206 1-338 8-702 
4 0.984 0.042 0-216 I- 108 5-686 

native protein and the derivative can be observed. 
There is clearly an optimal amount of heavy-atom 
substitution that leads to both sufficiently large differ- 
ences in the intensities (and consequently in the nor- 
malized structure factors) and sufficiently large 23' 
coefficient. Furthermore, provided that the diffraction 
ratio is known, it becomes possible to evaluate a priori 
the overall reliability of the invariant estimates and 
to design the calculations accordingly. For example, 
in optimal cases the estimates are extremely reliable 
and their calculations worthwhile. When the diffrac- 
tion ratio becomes exceedingly large, however, the 
distribution converges to the traditional three-phase 
invariant and the benefits from the calculation of the 
integrated direct me thods - i somorphous  replace- 
ment distributions are marginal. In the optimal cases, 
since the predominant  terms of the distribution are 
the AIA2A 3 term, and to a lesser extent the R I A 2 A 3 ,  

AIR2A3, AIA2R3 terms, it follows that reliable esti- 

Table 3. Contribution to the A value from the eight 
magnitude product terms in the distribution 

MR = 15 000 One Pt derivative 
R 1 = R 2 = R 3 = 2"0 

A l =A2=A3 =0.5 

Contributors to the A value 
Ri R2R3 Rt R2A 3 RIA2A 3 AI A2A3 

R~AER3 ~R2A3 
AIR2R3 AI,~2R 3 

0"08 0"37 I "62 7"08 
0.37 ! "62 
0"37 1'62 

0"08 1" 10 4.85 7-08 

mates (i.e. large A values) can be obtained, even when 
the normalized structure factors themselves are small, 
provided that the differences between the normalized 
structure factors of the native protein and the deriva- 
tive are large. Furthermore, since the za's are signed 
values, both 0 and 180 ° estimates are obtainable. 

2.3. Comparison with Karle's simple rule 

A simple rule for estimating the values of triplet 
phase invariants (0 or 180 °) in isomorphous replace- 
ment procedures was presented recently (Karle, 
1983). When the simple rule, R~so, is used with normal- 
ized structure factors, it corresponds to evaluating 
the Zalza2A3 term in the present analysis. In many 
instances, the simple rule and the full distribution 
will yield identical estimates. The associated A values, 
however, can be significantly different as shown in 
Table 3. If all the terms are used an A value of 13.1 
is obtained compared to one of 7.08 when only the 
A IA2A3 term is used. Since the A term is normally 
used to assign a weight to the invariant estimate, such 
differences could be important. Furthermore, as 
would be expected, the time involved in the calcula- 
tion of the full distribution is negligible compared to 
the time involved in the generation of the invariants. 
Proper comparison of both methods, however, cannot 
be made until they are both tested against real diffrac- 
tion data. 

2.4. Evaluation of the diffraction ratio 

As can be seen from the form of the A term (22) 
and from Table 1, detailed knowledge of the heavy- 
atom content in the derivative is not needed for the 
evaluation of invariant phase estimates. The param- 
eters of the distribution can be calculated from the 
diffraction ratio alone. However, in many instances, 
because of uncertainty in the relative scaling of the 
native and derivative intensity data, the diffraction 
ratio cannot be evaluated with great accuracy. An 
alternative method to determine this ratio has been 
proposed recently (Hauptman, 1982). 
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The correlation coefficient r of the pair EH 2, GH 2, 

r = ((Ie .I  2 -  I e.l=)(I O.I 2 -  Io.12)>. 

×((IE.I=-IE.12)5~'/2<IC.12-10,.,I=)5;_, '/2 (25) 
2 is shown to be equal to c~/a200~02. Under the assump- 

tion that the atomic content of the derivative equals 
the atomic content of the native protein (p) plus the 
heavy-atom content (H) ,  

r = l / ( l + Z Z ~ / E z 2 , , )  

= 1/[1 +(diffraction ratio):/2]. (26) 

2.5. Phase accessibility 

As is the case of the traditional three-phase 
invariant, although probability distributions can be 
calculated for the whole family of invariants (at a 
given resolution) only a subset of these invariants can 
be reliably estimated. In the present case, however, 
this subset consists largely of invariants whose phases 
are associated with normalized structure factors for 
which large differences between the native and deriva- 
tive diffraction intensities are observed. Consequently 
only a subset of the structure factors can be reliably 
phased. Unfortunately, this subset, in some cases, 
may not coincide with that needed to calculate an 
interpretable density map. It is hoped that, in those 
instances, the phase set may be extended through the 
use of quartet invariants, standard phase extension 
techniques or density modification procedures. 

3. Concluding remarks 
In recent years, a formal mathematical integration of 
the techniques of direct methods and isomorphous 
replacement has been undertaken (Hauptman, 1982; 
Fortier, Weeks & Hauptman, 1984). The amount of 

information contained in the probability distributions 
is extensive, although often hidden behind the mathe- 
matical complexity of the formulae. As we have 
shown, it is relatively easy to translate the distribu- 
tions into the usual experimental parameters. 
Through such an exercise, a better understanding of 
the nature and scope of the distributions is attained. 
Conversely, the mathematical formulae yield a better 
understanding of the experiment, and indicate ways 
to improve and gauge the experiment. The exact role 
of direct methods in macromolecular structure 
determination cannot be predicted at this point. As 
has been the case with the traditional direct methods, 
several years of experience in the application of these 
methods will probably be needed before an accurate 
evaluation can be made. With the extensive theoreti- 
cal base now at hand, and the extremely promising 
results obtained to date, we are now in a position to 
address many of the unanswered questions, prin- 
cipally pertaining to the application of the methods 
to real diffraction data. 
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Abstract 

Theoretical expressions for the measurability of 
Bijvoet differences have been derived for triclinic, 
monoclinic and orthorhombic crystals containing p 
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(= 1 or 2) anomalous scatterers and many normal 
scatterers per asymmetric unit. Results for the many- 
atom cases (i.e. P= M N  and MC cases) in space 
group P I are also obtained. The theory takes into 
consideration the effect of data truncation due to 
unobserved reflections. The measurability values for 
the various cases are given in the form of compact 
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